蓉杠学习网

python 调用深度学习,

大家好,今天小编关注到一个比较意思的话题,就是关于python 调用深度学习问题,于是小编就整理了2个相关介绍Python 调用深度学习的解答,让我们一起看看吧。

  1. 深度学习的和Python有什么关联吗?
  2. 深度学习和Python的关系大吗?

深度学习的和Python有什么关联吗?

关于这个问题,可以这样回答,深度学习是一种内容,而Python是它的其中一种实现方式

深度学习是机器学习的一个分支主要是脱胎于当初的神经网络算法通过多个隐藏层的处理,达到我们所需要任务训练,得到一个有效的模型。深度学习因为他的有效性,现在被广泛应用在,CV、NLP、语音识别等方面。

python 调用深度学习,div>
图片来源网络,侵删)

而Python因为他语言的简洁性和易扩展性,被广泛使用。Python拥有很多科学计算库,比如numpy,pandas,scipy。可视化库matplotlib,Scikit—learn等,可以方便调用。也有很多现成的人工智能开发框架可以直接使用,比如现在比较常用的PyTorch和TensorFlow,Keras,Spark等。

打个比方,用了Python就是不用重复造轮子,如我梯度下降算法,我可以直接使用现成的自动梯度下降函数,而不用自己重新写函数。

总结一句,现在的深度学习的实现形式通常是Python,就是用Python代码编写实现我们的深度学习算法。

python 调用深度学习,
(图片来源网络,侵删)

深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:基于卷积运算的神经网络系统,即卷积神经网络(CNN);基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding);以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。

而Python是一种跨平台计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象脚本语言。最初被设计用于编写自动化脚本(shell)。正因为python语法简单,非计算机专业的人员也能很快的上手掌握,并且生态环境良好,包管理成熟,能够让你把主要的精力投入到深度学习的算法分析设计上,所以目前大部分研究人员都在使python。***如未来出现适合人工智能开发的程序语言,大家也会去学习。

深度学习和Python的关系大吗?

有一定关系,但没有必然的联系。深度学习是一种算法,大家对他的研究一般都是通过某个深度学习框架进行,很少从头去写代码的。比较出名的框架有caffe,torch,tensorflow,pytorch。

python 调用深度学习,
(图片来源网络,侵删)

比如说最初很有名的一个深度学习框架caffe,是用C++实现的,他的作者是一个中国人,贾扬清。贾大牛本科毕业于清华大学,这个框架是他在加州理工伯克利分校读博时候的作品,后来这个框架由这个学校团队在维护。它主要应用在卷积神经网络上面。caffe有python接口,就是说可以用python程序来控制caffe的运行

Torch是另外一个比较流行的深度学习框架,这个深度学习框架是用Lua语言写的。Lua语言相对比较小众,很多人用它来写[_a***_]脚本。Torch最初的支持者是Facebook。它相对于caffe来说更擅长在RNN方面的计算。

后来谷歌开发了tensorflow,***用的语言就是python,由于谷歌的大力支持,用tensorflow的人越来越多,再加上python本身有相当多数据处理方面的包。***用python进行深度学习的研究越来越主流。

于是,Facebook也把torch改进了一下,把它跟python结合了一下,搞了个pytorch。pytorch使用上比tensorflow要简单的多,再加上背后有Facebook的支持,很快与tensorflow有分庭抗礼之势。

总结一下,本来深度学习跟python没什么必然联系,一个是算法,一个是编程语言但是研究深度学习大家一般都***用深度学习框架,而主流的深度学习框架tensorflow,pytorch都是用python写的,caffe也可以用python控制,两者因此也就有了联系。

这就给了很多奸商空子,打着深度学习的招牌教python,实际上教的东西跟深度学习半毛钱关系钱都没有。在此严重鄙视。

到此,以上就是小编对于python 调用深度学习的问题就介绍到这了,希望介绍关于python 调用深度学习的2点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.rongung.com/post/25572.html

分享:
扫描分享到社交APP