蓉杠学习网

python 学习数据分析,python数据分析入门教程

大家好,今天小编关注到一个比较意思的话题,就是关于python 学习数据分析问题,于是小编就整理了4个相关介绍Python 学习数据分析的解答,让我们一起看看吧。

  1. 我是经济学专业大二学生,未来想从事金融,想自己学一下关于数据分析(Python)方面,应该怎么学?
  2. 如何用python进行数据分析?
  3. python数据分析需要学什么?
  4. python数据分析师的就业前景如何?

我是经济学专业大二学生,未来想从事金融,想学一下关于数据分析(Python)方面,应该怎么学

第一步:学习Python语言基础,它的各种语法用法这个过程因人而异,有的人喜欢看书,这里推荐《Python编程入门实践》,边看边跟着做,就能掌握Python的基本用法;有的人喜欢看视频现在网络发达很好找,比如B站、慕课网,搜一下就有。在此期间,可以看看廖雪峰等人的博客、Github上的学习笔记等。

第二步:学习数据分析所需要的库,这里主要是numpy、pandas、matplotlib等。推荐书籍为《用Python进行数据分析》,这本书作者是pandas的缔造者,里面很多示例,跟着敲就能通晓数据分析应该怎么做。

python 学习数据分析,python数据分析入门教程div>
图片来源网络,侵删)

第三步:学习一定的爬虫知识机器学习。数据怎么来?除了用别人的,有的时候还需要自己收集,这就需要用到爬虫。建议直接看崔庆才的爬虫***,B站有。而数据分析跟机器学习是形影不离、相辅相成的,网上教程也是一大堆,入门的话推荐吴恩达的网课版,注意不是斯坦福上课那个。

学习完前面的步骤,基本上就能自己开始数据分析了。遇到困难,多百度,多提问,逐步掌握。

双修统计应用数学类专业,或辅修计算机大数方向课程

python 学习数据分析,python数据分析入门教程
(图片来源网络,侵删)

经济学虽然有经济统计专业课程,但与数据分析还是有差距,不系统不深入。

热门职业竞争厉害,其他专业转方向搞大数据分析与挖掘,不系统学习是不可能胜出的。

总算碰到一个比较不错的问题了!

数据分析学习路线

python 学习数据分析,python数据分析入门教程
(图片来源网络,侵删)

一 当然是python的基础语法,另外sql的语法也要重点学习一下

二 学习python主流的数据分析框架:Pandas、numpy、matplotlib

建议使用工具:pycharm

三 重点学习下python数据分析相关的算法,一定要注意多思考,重在理解

四 前三点完成之后,可以在leetcode上进行练习

题主经济学大二生,将来目标是金融行业,这是很不错的职业规划,竞争虽然激烈但确实有钱途。至于说数理工具数据分析等等是否要下大力气学习,这是当然的,对将来工作很有用,但是,却不是最重要的。对金融行业就业来说,什么最重要?


学历背景

金融就业对学历,对出身,要求很高,非常高,不管是投行,债券,还是基金都是如此。国内金融高端就业领域对毕业生所就读大学院校的要求很变态,顶级的只要清华经管,连清华五道口院都以研究岗为主;北大光华汇丰CCER还有现在慢慢出头的燕京;复旦经管交大高金安泰,当然还有人大等这些最顶尖的高校,实事求是的说,其它学校机会很少。举个例子,BATM招聘,最后录取的投资部成员,都是清北毕业,且不乏哈佛、耶鲁等藤校背景的。再比如国内某著名基金,只要本科就是清北的,清北硕士都不行。出身,很重要。


金融专业有很强的地域性,记住:重要的不是金融学还是金融工程数据分析计算技术,而是各种实习背景的安排,没有实习,没有强有力的实习,实力无从体现,找工作一样没戏。什么叫“强有力”?一般小券商的实习,四大事务所的实习,都没多大用。


清北的金融本,大部分都去米国英国了,去哥大伦敦政经巴黎高商看看,乌泱乌泱的。若非如此,一般985两财一贸考清北复交的金融研上不了岸。

金融经济学跟其他专业不太一样,它是非常注重实操的行业,专业上需要学习的东西不太多,也没有想象中的难度。金融业从业,人脉,关系,朋友圈,比投资技术重要。所以,题主学不学数据分析没那么关键,重要的是考研,提升自己,能出去就出去,出去也必须瞄准米国前十英法顶级,出不去当然死掐清北复交至少是985两财一贸,再把实习背景做做好。

题主有志于金融行业,当然没毛病。只是有一点一定要提醒一下,这是个投入比较大的专业,资金投入,时间投入,精力投入都很多,尤其是实习,要有心理准备。

好一点的经济金融专业岗位,现在看来不太可能本科就去就业,绝大部分得读个研深造一下。一般无非就是两个出路:保研,或者出国。

如何用python进行数据分析?

你好,Python是一种功能强大的编程语言,可以用于数据分析。以下是使用Python进行数据分析的步骤:

1. 安装必要的库:Python有许多用于数据分析的库,如NumPy、Pandas、Matplotlib等。使用pip安装这些库。

2. 收集数据:收集您要分析的数据。数据可以来自各种来源,如[_a***_]、数据库、API等。

3. 数据预处理:数据预处理是数据分析的重要步骤。您需要清理数据、去除重复值、处理缺失值、转换数据类型等。

4. 数据分析:使用Python库对数据进行分析。您可以使用Pandas库进行数据统计,NumPy库进行数学计算,Matplotlib库进行数据可视化等。

5. 数据可视化:数据可视化是数据分析的重要部分。通过可视化,您可以更好地理解和解释数据。使用Matplotlib库创建图表图形

6. 报告和分享结果:最后一步是将结果分享给其他人。您可以使用Jupyter Notebook、Python脚本或其他可交互式工具来共享您的分析结果。

总之,使用Python进行数据分析需要掌握多种库和技能,但这是一种非常有用和受欢迎的技能,可以帮助您在工作中取得成功。

python数据分析需要学什么?

一、数据获取

python数据分析工作中的第一步就是数据获取,而数据获取的渠道大致分为两种。第一种就是通过爬虫来从互联网上公开的抓取数据,第二种则是由企业自行提供。那么python数据分析学习要掌握的第一个知识就是,python爬虫程序编写

二、数据存储

在通过爬虫或者是其他渠道获取到数据之后就需要将数据保存起来,而MySQL这种关系型数据库就是非常不错的选择。python数据分析学习的第二个知识就是数据库的使用,以及sql语句的编写。

三、数据处理

在得到数据之后还需要根据需求对数据进行频繁的清洗、去重等操作,而数据处理一般可以使用numpy、pandas等库去完成。那么第三个知识点就是python数据处理的库,及其方法的使用。

四、数据建模

数据处理完毕之后并不表示能够得到最终的结果,那么这一步就是python数据分析的核心了,数据建模和分析。通过matplotlib和回归算法等来将处理好的数据进行分类建模处理,这样才能更好的进行分析。

五、数据可视化

最后一步就是将处理和分析完毕的数据建模通过图标或者是三维图像方式显示出来,以直观的方式来查看python数据分析的结果。

Python 数据分析需要学:

Python: Python 是一种解释型的高级编程语言,是数据分析的基础,用于编写数据处理程序。

NumPy: NumPy 是 Python 的一种开源的数学计算库,提供了丰富的数学函数和便捷的矩阵运算功能。

Pandas: Pandas 是 Python 中一种强大的基于 NumPy 的数据分析库,提供了便捷的数据结构,函数和工具,可以更快速地完成数据处理任务

Matplotlib: Matplotlib 是 Python 中一种专为数据可视化而设计的库,可以快速绘制出各种图表。

SciPy: SciPy 是 Python 中一种科学计算库,主要用于科学、工程计算,提供了大量的科学计算函数和算法。

StatsModels: StatsModels 是 Python 中一种强大的统计分析库,支持线性模型、统计模型等多种分析方法。

1、首先要掌握Python基础知识包括Python语法、数据类型、变量、流程控制等;

2、学习Python数据分析常用的库,如NumPy、Pandas、Matplotlib等;

3、了解数据***集技术,能够从网络、数据库等获取数据;

4、学习数据清洗和数据处理技术;

5、学习信息可视化技术;

6、学习统计学和机器学习基础知识;

7、熟悉常见的数据分析方法,如数据挖掘、回归分析等。

学习Python数据分析,需要学习以下几项内容

1. Python编程基础;

2. 统计基础;

3. 数据清洗、库存和时间序列处理;

4. 数据可视化;

5. 机器学习算法;

6. 模型评估和验证

python数据分析师的就业前景如何?

未来就业前景还是很不错的,但是越往后发展,综合能力要求越来越高。

从目前来看,数据分析师往后将分化成2个大的方向:

(1)偏技术方向,掌握更多的大数据技术如Python、r语言等,更全面的数据分析及可视化的工具如excel、spss\sas、tableau等BI工具,精通数据分析及可视化的实现过程、擅长程序语言。

(2)偏应用/业务方向,掌握更多的业务知识、管理知识、商业知识,对数据本身具备远大的洞察力、对数据的价值认知深刻,精通于数据产品化、商业化、数据变现等 没有好坏、高低,只有更自己潜质的方向

这是一个非常好的问题,作为一名IT从业者,同时也是一名教育工作者,我来回答一下。

首先,从工业互联网和大数据的发展趋势来看,Python数据分析师的就业前景还是非常广阔的,一方面数据分析本身的应用场景会越来越多,另一方面Python语言在人工智能领域也有比较广泛的应用,所以Python数据分析师的发展空间也比较大。

如果要走Python数据分析师的发展路线,应该从以下三个方面来提升自身的职场价值:

第一:注重新技术的学习。数据分析技术是当前技术迭代速度比较快的领域,所以数据分析师一定要紧跟技术发展趋势,尤其要注重算法相关知识的学习。从大的技术方面来看,当前数据分析的方式主要基于统计学和机器学习,机器学习在数据分析领域的发展潜力还是比较大的,而且机器学习也是人工智能技术体系的重要组成部分,所以一定要重视机器学习相关知识的学习和深入。

第二:重视平台的价值。数据分析师要想提升自身的职场价值,除了要进行技术提升之外,还要从工作效率方面入手,而提升工作效率比较有效的方式就是合理利用平台。产业互联网时代一定是平台化时代,数据分析作为大数据平台的重要功能,必然会得到平台大量的支撑,所以数据分析师一定要重视技术平台的运用。

第三:重视行业知识的积累。数据分析师对于行业知识的要求是非常高的,要想让数据分析在行业领域发挥出更重要的作用,数据分析师一定要能够在立足行业的基础上进行技术选型和应用。

我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。

如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

到此,以上就是小编对于python 学习数据分析的问题就介绍到这了,希望介绍关于python 学习数据分析的4点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.rongung.com/post/37761.html

分享:
扫描分享到社交APP