蓉杠学习网

python可以机器学习吗,python可以做机器人吗

大家好,今天小编关注到一个比较意思的话题,就是关于python可以机器学习吗的问题,于是小编就整理了5个相关介绍Python可以机器学习吗的解答,让我们一起看看吧。

  1. Python速度那么慢,为什么还经常用于机器学习?
  2. 如何学习作为机器学习基础的Python语言?
  3. spark机器学习和python机器学习的区别是什么?
  4. python做机器学习的话有哪些推荐的书跟课程?
  5. 机器学习需要掌握网络爬虫吗?为什么?

Python速度那么慢,为什么还经常用于机器学习?

python 在机器学习时,运行计算时,调用numpy 库,这个库速度非常快,和c语言的一个级别。现在运算量大的 机器学习 算法,都用 gpu,tpu 等硬件提速,如果靠cpu,无论***用什么编程语言,都不可能 达到要求,类似 比特币挖矿,都用矿机,用cpu 挖就赚不到钱,比电费多不了多少。机器学习 ***用硬件提速 也是这个道理。所以和上边***用的编程语言 关系不大。 python 编程速度快,算法编程实现是,可以大大节约 开发人员的时间,减少软件错误

python,是最适合机器学习的,所以被广泛***用。

python可以机器学习吗,python可以做机器人吗div>
图片来源网络,侵删)

python,只所以在桌面软件,服务器等大型软件上,***用的少,主要原因是 和 c以及java 相比,python 不利于代码的保密。而机器学习,不需要将算法代码,发布给用户,所以没有这方面问题。

大部分的机器学习库都是用 C++ 写的,都提供了对 Java 和 Python 的支持使用这俩语言相当于在调包而已,一些计算密集型、IO密集型的操场都是底层框架在跑,所以对于 Python 写的机器学习项目来说,不是很慢。

主要原因还是 Python 语法简洁,上手容易。

python可以机器学习吗,python可以做机器人吗
(图片来源网络,侵删)

如何学习作为机器学习基础的Python语言?

大概可以分成几个阶段

第一个阶段,是掌握Python 基础技能。这可以按照一些教程书籍进行,比方说《笨方法学Pyhon》、廖雪峰的Python教程、《Python cookbook》等等。这一阶段的重点是多看多写代码,只有多看多写才能尽快熟悉。在这个阶段,还要熟悉一些常用的库,例如Numpy、pandas、matplotlib等等。这些可以按照文档或者在github上找到现成的文档和代码来学习。

第二个阶段,了解一些机器学习的基本内容。可以看MOOC,也可以买些相关书籍。吴恩达的机器学习教程很受欢迎,网上能找到视频笔记

python可以机器学习吗,python可以做机器人吗
(图片来源网络,侵删)

然后进入第三个阶段,把Python和机器学习结合在一起。可以自己尝试实现一些机器学习工具,例如k-均值聚类、决策树、线性回归、逻辑回归、支持向量机之类,要是自己实现不了也没有关系,毕竟github上有大量的代码可以参考学习。

别相信那些一上来给你推荐十来本几百页书或者资料的人!学python,十步!一,安装python3!二,Google查一下基本语法!三,Google一段简单的python代码跑一下,修改代码去理解基本语法!四,自己找一项目写代码,实战出高手!五,写代码!六,写代码!七,写代码!八,写代码!九,Google python的面向对象!十,GitHub上开一个自己的项目!

spark机器学习和python机器学习的区别是什么?

spark是一个框架,python是一种语言,spark可以由python编写,python可以在spark下运行。原理上都是一样的,机器学习的原理都是[_a***_]上的东西。两者的区别只是语法上的不同,spark比较适合处理海量数据但是代表python不可以,而且python引入spark架构,既可以充分利用spark的分布式优势,也可以利用python灵活方便的优势。用的话选一个用就好了,没有一定的谁好谁坏。

python做机器学习的话有哪些推荐的书跟课程

机器学习:

1.理论研究和推导可以看周志华老师的《机器学习》,也称为西瓜书,里面讲了各种算法的推导,比如线性回归,k值最近邻,支撑向量机等可解释模型,缺少神经网络的具体讲解。(还有一点就是其中不涉及到代码)

2.被奉为神作的是一本名为《Hands-On Machine Learning with Scikit-Learn,Keras&TensorFlow》,这本书把机器学习的讲解和代码结合在一块,从线性回归到支撑向量机再到深度学习都有设计(但以机器学习为主)

3.《机器学习实战》,真本书是一本比较经典的书,书比较老了,但是讲的挺好,这本书主要偏重代码,没有涉及到深度学习

深度学习:

1.理论研究的话可以参考花书《深度学习》,这本书纯粹讲理论推导,不涉及代码,是一本比较经典的书

2.《TensorFlow深度学习》,这本书Github上有免费的电子版,把深度学习的TF2.0相结合,俗称龙书,应该是TF书里面比较好的了

3.《动手学深度学习》pytorch版,这本书是把深度学习和Pytorch相结合,是Pytorch里面比较好的书籍了

课程的话:入门机器学习可以看吴恩达的课,主要是我一般喜欢看书自己学[捂脸][捂脸][捂脸]


机器学习需要掌握网络爬虫吗?为什么?

因为数据是人工智能的基础,而爬虫是获取数据的方法之一,数据分析是为人工智能准备数据的前提。如果人工智能是匹千里马,那么爬虫就是出去割草的小牧童,而数据分析就是整理牧草晒干草的过程。当然,在条件具备的情况下,可能数据来源会有很多,但爬虫至少是一个可靠的途径。如果没有这两个过程,很可能人工智能这匹骏***饿死。

虽说机器学习不要求掌握网络爬虫,但是,机器学习总要有样本,这个样本可是不容易搞,当然有一些现成的样本库,学习可以,应用还是要落地,所以我觉得网络爬虫对于搞机器学习还是必要的。

不需要的。虽然说网络爬虫确实是数据***集的利器,但是机器学习更重要的是算法什么的,机器学习的数据来源有很多,不只是限于网络爬虫。其实网络爬虫和机器学习完全可以说是两个方向。不过如果两者都会的话,对你是百利而无一害的,技多不压身

到此,以上就是小编对于python可以机器学习吗的问题就介绍到这了,希望介绍关于python可以机器学习吗的5点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.rongung.com/post/38421.html

分享:
扫描分享到社交APP